中国核物理论坛

 找回密码
 注册

QQ登录

只需一步,快速开始

搜索
查看: 378|回复: 0

太阳系火星地球一切奥秘之源-续二

[复制链接]
发表于 2017-5-27 13:58:14 | 显示全部楼层 |阅读模式
太阳系火星地球一切奥秘之源-续二

三)、大树形接触式原子核结构的间接证据(因高速旋转,故永远无直接证据)
1、大家一起看看核结构的主轴长与原子核的直径有什么关系?
卢瑟福用α 粒子打击原子核发生散射的方法,求得核的大小,即所认为的核半径大小:计算方法是:由能量守恒定律与角动量守恒定律得到核半径公式,算出核的半径。(文献2)由以上实验测得下例一些原子核的半径:
钴60核(60 C O ) 半径大小为:1.58×10-14 米。
银核 半径为:2×10-14 米。
通过对树形核结构模型的主轴直接测量,可以得到核的主轴长。这个长度正好与卢瑟福实验的核半径大小相吻合(在实验误差内)。
科学家测得1个质子半径(也是1个中子半径)约为0.8×10-15 米。树形核结构主轴长正好是主轴上所有质子和中子直径的总和(不计支节)。对于钴60核(60 C O ) 主轴上有8个S层质子和12个中子,所以,计算出半径总和为:
R=(8+12)×0.8×10-15 米=1.6×10-14 米。(与测量值相差0.02×10-14 米)
对于银108 Ag 核 主轴上有10个S层质子和16个中子,所以主轴半径总和 为:
R=(10+16)×0.8×10-15 米=2.08×10-14 米。(与测量值相差0.08×10-14 米)
从以上实验和测量可看出,在实验误差范围内,卢瑟福实验测出的核直径正好等于大树形核结构的主轴长。 至于为什么有一点误差?那主要是对高速旋转的核进行实验有测不准的原因,核本身高速自旋、实验碰撞时大核也可能要发生偏移;还可能是受支节核力的影响,因而产生误差。仔细看看可以发现:是卢瑟福实验的测不准,还是大树形核结构不对呢!
2、铀235裂变产物为什么没均匀分布
重核裂变的机制:中子打进铀235后,形成一个新的处于激发态的核,由于其中核子的剧烈运动,核子间的距离增大,核力迅速减少,不足以克服质子间的库仑力,核就分裂成两部分或三、四部分。裂成三、四部分的机率很小,是裂成两部分机率的千分之三和万分之三,裂成两部分机率最大。看裂变分布图图1-5:
..原子核裂变产生巨大的能量,裂变过程是首先以不太快的中子打击U235铀核,短时的形成U236铀核,U236铀核存在短时间后,马上分裂出两个或更多的核,裂变产物分布不是大小一样的平均分配(也就是说:不是从U236铀核中心断裂),而是在核子数为96和139左右两个地方占主要部份,也就是核结构的双中子结构部位。为什么呢?
双中子结构是核力较弱之处,而打击进入的中子与双中子组成三中子结构,由核力势垒图可见,三中子结构只有微弱的引力不足以组成核结构(激发态的核),上部质子都处于激发态正向基态回归一样,调节速度太慢,所用时间太长;当三支2P质子脱离2S的接触位置向上飘移时,三中子结构已经断裂开,并在此位置放出1-2个中子,所用时间约为10-12秒 ,此时,三支2P质子将继续向上飘移并与上部核组成新的大核,下部核也调整组成新的大核。U236铀核由此断裂成两个大核如图1-6所示:
3、氢核聚变成氦核这两个实验可以做一做
  3H + 2H—→ 4He + 1n + 1.76×107eV
按能量最低原理,氘的中子是应该排列在核磁N极,氚核中子应该上下各排列一个。
实验一:氘、氚两个S极相碰撞或两个N极相碰撞都不能聚合在一起。当氘核的S极与氚核的N极相碰撞时产生氦核不会是氦4(4He)反而可能是氦3(3He)。带着强大能量的氘核碰撞到氚核后,部份能量像钢体性弹性碰撞一样顺次传递给氚核S极最末的一个中子,这个中子得到能量并克服质子的吸引飞出核外。如图1-7所示。
首先从S极放出一个快中子,再从N极放出一个慢中子,最后可能成为一个中子的氦核。
实验二:当用氘核(子弹)的N极与氚核(靶子)的S极相碰撞时产生氦核是氦4(4He))。带着强大能量的氘核碰撞到氚核后,部份能量像钢体性弹性碰撞一样顺次传递给氚核N极最末的一个中子,这个中子得到能量并克服质子的吸引飞出核外。如图1-8所示。
只要验证中子是在N极飞出,这个实验就是正确的。
4、1-20原子核结构图部分
总之还有许多观点都能证明大树形核结构的论点:核的非对称性(宇称不守恒),碳核的三角四面体对映的碳的电子云图,核力有心力,核力相邻短程,氧族α衰变后成为了稳定,稳定的核族总有主轴形或三角四面体形。
第二部分:宇宙能
我们圣星最初使用的是重核裂变能量发电,裂变时有许多核污染。后来受控聚变替代了裂变,今天我们圣星所有飞行器和陆上运动器全是聚变能源,而且主要是氘核聚变生成氦3产生的能力。如图:
原子核结构和核力怎么来的呢?我们通过假设质子高速自旋、中子质子为强磁化物,推导出短程强大的有心力-安培力,和非有心力库仑力组成核力。并估算出两种力的大小组合,得出核力在R-5R范围内表现为吸引力,在小于R和大于5R之外表现为斥力。小于R时斥力特别大,估算得出的核力图与物理界得出的“两体核势垒示意图”完全吻合。说明质子之间间隔一个中子或两个中子还能表现为引力,即“单中子”和“双中子结构”就是大核的组成结构。物理上多年的断层理论在此看来是最简单的一些推导,实在是让大教授们大吃一惊。
一)、质子中子的运动及性质的超常假设
原子核内质子高速自旋早就被物理界证实,自旋圆周线速度是多少呢?这里的第一个超常假设:设质子中子为球形,设原子核内质子最外一点自旋圆周线速度为光速约3×108m/s。质子以光速自旋是不可能有实验能证明的,而由此可知靠近转轴的质子表面圆周旋转速度一定大于光速,爱因斯坦的超光速质量变大理论是否能解释?小小的原子核却占有99%以上的质量。若假说宇宙由一奇点爆炸而来,那么现今的宏观宇宙来源可能原因就是质子的光速自旋。
质子中子电荷分布在一个小区域内,可以认为是在一个小小的点上分布着一份电荷。霍夫施塔特早年用快电子打击质子中子实验时发现:质子的电荷分布在一个小范围内,而中子在这小范围的正电荷外围分布着小圈负电荷。这些“小范围”与整个质子中子体积比较相当于一个小小的点。组成质子中子的物质并没有平分电荷,而电荷就是在一点上。于是,第二个超常假设:设质子电荷集中在一点上,这一点正好在质子光速自旋的外围圆周上。换句话说:质子电荷点随质子自旋以光速作圆周运动。如图1-2:
以上的两个超常假设完全可以用电子的运动状态反推出来。电子与质子相比:电荷量一样但质量小得多,因此,电子的运动状态一定是受质子控制和影响,质子运动状态决定了电子的一切。在没有任何外界因数影响时,电子的自旋状态与质子上电荷点的自旋状态应完全一至。也就是说电子与质子自旋半径都是质子的半径,自旋线速度都是光速。物理研究中发现的所有电子运动性质完全可反推出质子的运动性质,电子云图也正好是原子核结构的镜像图,适用于电子排列的所有规律也一定适用于核内质子的排列规律。
有了以上两个假设,物理断层理论:核力与核结构似乎有了一些眉目,但若没有下面第三个假设还是不能顺利解决。
第三个超常假设就是:组成质子和中子的内部物质是微观易磁化物质,具有超导磁性,在无电场时又能很快退磁。一种元素有时有许多同位素,也就是说同样多的质子数的原子核具有不同的中子数,其中子数目并不是无限制的多,而中子被核力吸引靠的是什么力呢?那主要就是靠中子在接触质子时被磁化而吸引;中子磁化后对它接触的另外第二个中子再磁化,但再磁化的吸引力要变小些,大多数出现在大核的主轴上;第二个中子还可以对在外第三个中子再磁化,且吸引力量更小,在旋转较慢的大核主轴上才能出现。原子核内质子中子就是靠磁化有限制的吸引在一起的。
以上三条假设,与其说是“假设”,不如说它们原本就存在,只是被本文说得更清楚一些更准确一些了。质子除自旋外,还有两种运动状态:质子随原子核绕主轴作支节圆周旋转;质子随原子核作整体圆周旋转。前一种支节圆周旋转时能加强外层质子中子的核力大小;后一种整体圆周旋转时,使每个质子中子都要具有一定的向心力,从而能减缓强大核力对每个质子中子强大吸引力的冲击,确保整个核的平衡和稳定。
二)、核力的组合和性质
万有引力在原子核内存在但很弱小,可不计算它。核力主要由两种性质的力组成:一种是有心短程强吸引力;一种是只与距离有关的非有心力,并表现为斥力。它们分别是电流环产生的安培力和正电荷相互排斥产生的库仑力。
安培引力是怎样产生的呢?原来质子光速自旋,质子上分布的一点正电荷也光速自旋,且自旋半径就是质子半径,正电荷自旋时产生一个环形电流强度,根据电磁感应环形的电流感生出一个感应磁场,这个磁场再将组成质子中子的物质磁化,磁化后使产生的感应磁场加强了4-5倍,存在磁性最强的两极N、S极,中子就被吸引在这两极上,在两极吸引的中子之外再吸引其它中子或质子,使这种力成为有心力。除这两极外其它地方不具有吸引中子质子的力量。例如:氢核可吸引1-2个中子组成氕氘核。
相邻两质子间隔1-2个中子同方向光速自旋,产生一个同方向的电流环,由安培定律可知道:同向电流环相互吸引,电流环磁化后的质子中子也是顺磁吸引,这个力通过安培定律可以计算出来,称这个力叫核内有心安培吸引力,简称安培力。安培力的性质主要是:安培力是短程强吸引力;安培力主要作用在每个质子的两极上,也就是主旋转轴上最强,偏离主轴将会减弱的有心力;磁化后的质子吸引中子表现出与电荷无关性的核力性质。偏离轴心核力减弱后,但还可在第二层外一定偏离角度内吸引不少的支节,从而组成强大的核结构。复杂的结构与高速的自旋使“核结构和核力”成为多年物理断层。
如图1-2氦核质子中子电子图。核内有两个质子和两个中子,两个质子以相同方向同轴旋转产生一个安培吸引力,两个质子带相同的一份正电荷而相互排斥,正好一个中子间隔在中子间起调节缓冲作用减弱质子相互的斥力;这样核内的两种力量表现为相互吸引,使核能稳定并组成宏观物质。
再看核外两个电子,它们质量太小自然受质子上正电荷作用控制,随质子同向自旋。电子与质子带电荷性质不同,应该因此而相互吸引产生电中和现象,但是在电子质子自旋中产生的安培力是相互排斥的,所以自旋的电子质子很不容易产生正负电中和现象,从而形成了大的原子。从图中观察发现:两个电子是同向自旋的,但从外围向中心观察,图左边电子是逆时针方向自旋,右边电子是顺时针自旋。原子本身是高速圆周旋转的,而在实际中科学家们通过仪器的观察都是一个位置向内观察的:当看到一个电子逆时针转动的同时另一个电子已经随原子圆周旋转到了同一位置且正好是顺时针方向。因此得到:在同一轨道上的两个电子自旋方向是相反的。也就是包利不相容原理——相同能级轨道上不可能存在两个自旋方向完全相同的电子。如图原子结构不可能是静止不动的,原子高速旋转给观察者的视觉只能是逆顺两种电子态。
包利不相容原理证明电子存在逆顺两种自旋电子,从而证明了两个同一能级的质子在同一轴上自旋相同。那么电子能级原理洪特规则、电子壳层排列原理等都实用于质子能级和质子壳层排列;只是核内太小的地方进行的强力作用不可能使质子处于悬空状态,只能以间隔中子的形式相互接触的形式存在,并以不同速的核圆周旋转达到减缓作用。(从而也带动了核外电子的高速圆周旋转
核内除了质子之间的安培吸引力外,另一种就是库仑斥力。它是由质子之间正电荷相互排斥产生的,它只与距离有关、与轴无关的无方向性的力;当距离减小时它迅速变大,使相邻两质子不能太靠近。中子与库仑力无关,中子只被磁化而被质子吸引,它只是核内强力作用下质子之间的保护神。
原子核内当相邻两质子距离太近时,库仑力大于安培力表现出排斥,从而不能组成核;原子核内当相邻两质子距离大于一个距离R且小于一定距离nR时,安培力大于库仑力表现出吸引力,这就是组成原子核的原因;原子核内当相邻两质子距离大于距离nR时,库仑力再次大于安培力,这出不能组成核结构。而在R——nR之间只能由中子间隔。与电子层结构一样,质子也分层,核内质子除S层质子在主轴上外,其它的P、D、F等质子应在不同层次的支节上,支节随主轴旋转也要产生校小的安培力,这个力的计算已经没多大必要了。整个原子核的圆周旋转时需要一定的向心力,这个力减缓了多余的安培吸引力,从而使核结构能稳定存在并组成物质。(电子层用小字母spdf表示,质子层用大字母SPDF表示)
以上两种力都可以通过一些常用公式加以计算,计算出的力的大小与距离的关系图会让全世界的物理学家吃惊,这个图与已经存在的核力势垒图几乎完全一至。让我们不得不认可核力的奥秘和调皮。
三)、核力的具体计算及大小
通过以上的假设,首先计算出环形电流强度的大小,再计算环形电子流产生的感应磁场强度大小及有质子中子参与磁化后磁场强度的增加倍数,从而计算出在一定距离处安培力的估计大小。通过同一距离处与库仑力大小的比较得出核力的区域。
1、 质子环形电流的大小I
质子中子的半径为R=0.8×10-15米。(这个数是许多科学家通过测量和计算得到的。)
质子电子电荷量都是q= e = 1.6×10-19库仑
质子上正电荷自旋线速度C=3×108米/秒
所以:  质子上正电荷自旋圆周长度L=2πR
∴ 正电荷自旋一周的时间T=2πR/C
∴ 质子上环形电流强度I=q/T=eC/(2πR)      …………(1)
这个电流计算出来是是非常强大的,且每个质子的环形电流一样,电子自旋电流也一样。
2、质子主轴上磁感应强度B
只有正电荷电流环时产生的磁感应强度较小,有质子参与磁化后这个磁感应强度会加强3倍多,再有中子参与磁化时磁感应强度会在同一点加强4-5倍。
设环形电流在主轴距离质子中心r处磁感应强度为B0   ((令r=nR)
由“毕奥——萨伐尔定律”,得到磁感应强度B0
其中u=4π×10-7牛顿/安培2  (常数)
R为环形电流半径(即质子半径),r是主轴上距离环形电流中心的一点r=nR,I就是(1)式中的环形电流强度。主轴上距离不同对应的只有n不同。
在质子主轴表面(r=R,n=1)的磁感应强度是
质子被电流环磁化使质子表面的磁感应强度加强了3倍多,由下面公式可计算出磁化后增强的磁感应强度B’。(设质子中子是最易磁化的物体)
B’=u M (L/D)[1+(L/D)2 ]-(1/2)
其中u=4π×10-7牛顿/安培2  (常数);
L和D是磁化物体的长和直径,对球形体质子来说L/D=1;
M是物体磁化强度,质子的磁化强度M=△m/(△V)=I△S/(△V)≈I/(1.5R)
其中△S为磁化物面积,△V为磁化物体积,对球形质子约为1:1.5R
代入B’得:B’=u *[I/(1.5R)]*1*[1+(1) 2]-(1/2)=0.943 uI/(2R)
所以:质子主轴上表面一点的总磁感应强度B为
如图可看出,质子参与磁化使电流环产生的磁感应强度加强了许多倍,从而使核子间的吸引力大大加强。
再有中子参与磁化时,以上产生的磁感应强度一定还会加强一些。中子质子物质相同,磁化强度M应该一样,有中子时只是L/D的比值加培了,因此B’有所加大。通过估算得出:
有一个质子和一个中子时B=4.373 B0
有一个质子和二个中子时B=4.577 B0
有一个质子和三个中子时B=4.658 B0
通过质子主轴表面的磁感应强度的不同估算,同样可以得出主轴上其它任意处的磁感应强度,其倍数关系也同上面计算一至。
因此:质子被磁化后,质子和电流环就是一个整体,质子内磁磁应强度也该一样。就象一个磁体一样,磁体内磁场一样强,磁体外随距离不断减小。因此:主轴上距离具有电流环的质子主轴表面任意处(r=nR)的磁感应强度B
B=X*B0                    ……………(2)
其中X是有质子和不同数目的中子参与磁化时的不同倍数,
X=3.667,4.373,4.577,4.658
注意:计算核力时,距离r 从质子表面取值。
2、 核力大小的计算:
甲质子磁感应场对在距离自旋质子表面主轴r=nR处的乙质子自旋环形电流产生的力是安培力,由安培定律得:
F安=∫d(L B I)=2πR B I
L是乙质子的电流环圆周长,I是乙质子的电流,B是甲质子的磁感应强度。将I、B代入,并将e、C、R、u已知量代入得到:
其中:n=r/R计算出n,而X=3.667,4.373,4.577,4.658取不同的值。
两个质子相似于两个磁体的作用,因此r都从磁体的表面取值,磁体磁场大小一样。
两个相距r距离的质子的正电荷相互排斥产生的静电力为库仑力大小计算为:
F库=Ke2/r2=Ke2/(nR)2=9.0×109×(1.6×10-19)2/(n×0.8×10-15)2
即F库=360/n2牛顿
其中K=9.0×109(牛顿米2/库仑2)
两个质子接触时,库仑力就是最大值了,因此r的取值只能是从质子表面取值。即两质子表面相距r=R时,n=1,两个质子表面相距为R远,且在主轴上。
F安是吸引性质的有心力,F库是排斥性质的力,如果核不作圆周旋转(质子一样要自旋),则F安=F库从而得出n的大小,求出质子外r的距离。
由:
X取3.667(一个质子磁化)
得:n≈0.72和 n≈3.2
也就是说:r<0.72R和r>3.2R时,库仑力大于安培力,表现出斥力。
0.72R<r<3.2R时,安培力大于库仑力,核内表现出引力;这就是组成核的一个很小的区域,物理上叫它为核力区。
当有中子参与磁化,X取4.577时,这个核力区域为:0.62R < r < 4.2R
由于在原子核内,质子P、D、F等支节要绕轴旋转,整个旋转也将产生一个半径更大的电流环,只是速度要小得多,也要产生一定量的安培力,使核内吸引力加强;又由于支节质子增多同时库仑力也有所增大。所以核力区域只能估计约在:R < r < 6R之内。核力区域大小分布图可以由以下实际计算并画出。
当n=0(两质子接触)F安  =+1320牛顿    F库=-为无穷大数   排斥
当n=1(两质子悬空)F安  =+466.8牛顿    F库=-360牛顿     吸引
当n=2(两质子间隔1个中子)F安 =+140.8牛顿   F库=-90牛顿  吸引
当n=3(中子不能为1.5个) F安 =+49.8牛顿   F库=-40牛顿  吸引
当n=4(两质子间隔2个中子) F安 =+23.6牛顿   F库=-22.5牛顿  吸引
当n=5(中子不能为2.5个) F安 =+12.5牛顿   F库=-14.5牛顿  排斥
当n=6(两质子间隔3个中子) F安 =+7.5牛顿   F库=-10牛顿  排斥
支节参与的实际核内核力要大些分布如图1-4:

上图与物理中的两体核子势垒图1-5完全吻合。原因如在?核力真的是安培力和库仑力的合力么?如果不是那么这两个图为什么相同?

原子核的结构形式是什么形式?从以上计算可以得出来。高速旋转的质子悬空达到平衡的结构形式是不可能存在的。两个质子之间间隔一个中子时核力大小表现为吸引力约50.8牛顿,这种结构形式是核结构的的主要组成形式,叫单中子结构。两个质子之间间隔两个中子时核力大小为1.1牛顿(有支节时这个力应该达到20多牛顿),这是核结构的次要组成形式;次要结构形式主要在三个P支节组成的三角结构之内的主轴上,叫双中子结构。两个质子之间间隔三个中子的时候,在大核支节作用下其核力约为0牛顿,刚想处于平衡态,但核的圆周运动离心力的原因,会在三中子结构处分裂开;它不是核的结构形式,在原子核裂变反应时,中子打击大核首先组成三中子结构,短时间平衡后,迅速分裂成两个其它核;这就是裂变的机制。如下图1-6
在原子核结构中,各支节和1S层质子是由单中子结构形式组成的,各支节要偏离主轴一点,其P质子与S质子的吸引力并没有计算的核力大,偏离轴心磁感强度要迅速减弱。2S层以下的3S、4S、5S、6S等之间都是双中子结构。高速旋转时也可看到核结构的分层,组成的壳层有1S、2S 2P、3S 3P 3D、4S 4P 4D 4F、5S 5P 5D、6S 6P等,与电子排列规律完全一至。看下一章详细分析原子核结构组成。
质子中子都是被磁化后产生的相互吸引,使核力表现出与“电荷无关性质”。相邻两个质子才有强力的吸引作用,使核力表现出“饱和性”的特点。每个质子都是通过中子与其它质子产生吸引的,使核力表现出“交换性”的特点。安培力与主轴有关,偏离轴心太大安培力迅速减弱,而库仑力只与距离有关的无心力,使核力表现出“有心力和无心力的综合性”的特点。
两个原子核要想聚合在一起必须满足两个条件:第一,两个原子核必须同向自旋,取顺磁方向;第二,两个原子核必须具有一定能量达到核力区域,不能超过,刚刚达到核力区。这就是聚变的机制,详细看上面核的聚变。
总之,核力就是由安培力和库仑力组成。核力的计算并不重要,高速的原子核本身使计算不可能精确。重要的是由计算得到的两种核结构形式,单中子和双中子结构就是核的组成结构形式,并由此可以画出现今世界上已知道的所有原子核结构和同位素核结构。其中聚变、裂变、α衰变等变化机制和位置让人们一目了然。这些才是研究核力计算得到的的重要成果。
光速自旋的质子与相邻光速自旋的电子的核力就是宇宙普遍存在的能源,如果没有这个能源中子永远是中子,不可能分裂为质子和电子,宇宙就不是现在的宏观宇宙,宇宙就只能是“黑洞”类宇宙。所以,我们就把这个核力叫做宇宙能。我们早就利用了等离子体喷射进行过宇宙飞行。现在只是把喷射出的等离子体处于可控高速旋转状态,再将固定于飞船上的异等离子体同向同速高速旋转,两者间除了产生喷射能力外,还将产生强大的推斥力量,这就是宇宙能的变相利用,也就是质子与相邻电子的核力同一原理。我们今天用的飞行器和地面运动器都用了这些原理,我们考查火星、地球、金星、木星卫星都是使用了宇宙能发达机(全名叫可控旋转喷射式等离子体发动机)。
虽然我们拥有宇宙能发动机,但我们无法将圣星整体移动到地球以内的地方,我们最大的本领就只能尽全球之力将太空中1万亿亿吨的卫星慢慢从一个星体移动到另一星体上方。我们发现了一个坚固的卫星就是木卫7(木星当时有7个卫星),我们将在这1000多年内无条件使用全球任何合金资源将它内部全部铸造成坚固合金层,组成大量能源区和生活区,成为可自由移动的使用时间永远的太空城,木星周围有大量的氘能源就是我们的理想能源。为了让太空城更稳定,我们还将取圣星部分星核。这个太空城我们为之取名为:天宫,我们圣星人的天宫。制造天宫之时我们还将无条件使用全球的飞船运输能源和合金,希望全球人们支持。
有人或问:为什么我们不移民火星或地球,一是大多数飞船无法长距离飞行,载人也不多,主要原因是当圣星分解时产生的岩尘四分五裂,通过多次计算火星和地球生命环境可能完全破坏,而且太阳系进入寒冷区时也只有地球之内金星处才合适人类生存在。接下来的时间就是工作,1000多年对我们来说就是小半生了(圣星人长寿几千年,耗氧少,居住环境低温,欲望少,人口不多)。
1900年后,天宫建成,首先运行到圣星上空,并采集了大量灵长类动物品种(或DNA采取),和许多植物品种,载上大多数圣星人类开始向金星移动。留下小数人在圣星观察后,第二站到达火星,采集了一些火星灵长类动物标本,第三站到达了地球也采集了一些动物标本。在太阳系进入到银河系寒冷区时,天宫到达了金星上空,并成为了金星的卫星。此时,从圣星传来信息,圣星星核全部冷却,星体裂口遍地深达核心……。终于,2000年的这一天灾难来临。天宫在经过火星和地球时,分别留下了部分科考人员长期考擦火星与地球在灾难中可能出现的异外情况。太阳系最近最大的一次灾难发生了。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|Archiver|中国核物理论坛 ( 桂ICP备15005227号

GMT+8, 2018-4-22 03:12 , Processed in 0.233447 second(s), 22 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表